National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Problems of the complex potentials of the isotropic elasticity
Kubíček, Radek ; Hrstka, Miroslav (referee) ; Profant, Tomáš (advisor)
The presented diploma thesis concerns linear fracture mechanics and deals with determination of the stress intensity factor of the finite crack, which is located in the vicinity of the bimaterial interface, solved by the distributed dislocation technique and theory of complex potencials. The work is possible to devide into three parts. The first part includes basic concepts of the linear fracture mechanics and is also dedicated to the mechanics of composite materials. The second part deals with the determination of the stress intensity factor from solving singular integral equation formulated by Bueckner's principle and the distributed dislocation technique. The third part includes the specific configuration of the crack with respect to the bimaterial interface and the solution, which is compared with results obtained from the FE analysis.
ON THE ENERGY RELEASE RATE OF THE CRACK EMANATING FROM THE INCLUSION INTERPHASE
Profant, T. ; Hrstka, M. ; Klusák, Jan ; Kersner, Z.
The problem of the crack emanating from the interphase region of the circular inclusion is investigated. The problem combines an application of dislocation distribution technique for a crack modelling and the method of boundary integral equations to approximate the loading along the boundary of the domain containing an inclusion. The topological derivative method provides the combination of both approaches and results to the evaluation of the energy release rate of the arbitrary oriented microcrack emanating from the inclusion and matrix interphase. The fundamental solution intended to the boundary integral method such as the continuously distributed dislocation technique is based on the application of Muschelishvili complex potentials in the form of the Laurent series. The coefficients of the series are evaluated from the compatibility conditions along the interfaces of inclusion, interface and matrix.
ON THE ENERGY RELEASE RATE OF THE CRACK EMANATING FROM THE INCLUSION INTERPHASE
Profant, T. ; Hrstka, M. ; Klusák, Jan ; Kersner, Z.
The problem of the crack emanating from the interphase region of the circular inclusion is investigated. The problem combines an application of dislocation distribution technique for a crack modelling and the method of boundary integral equations to approximate the loading along the boundary of the domain containing an inclusion. The topological derivative method provides the combination of both approaches and results to the evaluation of the energy release rate of the arbitrary oriented microcrack emanating from the inclusion and matrix interphase. The fundamental solution intended to the boundary integral method such as the continuously distributed dislocation technique is based on the application of Muschelishvili complex potentials in the form of the Laurent series. The coefficients of the series are evaluated from the compatibility conditions along the interfaces of inclusion, interface and matrix.
Problems of the complex potentials of the isotropic elasticity
Kubíček, Radek ; Hrstka, Miroslav (referee) ; Profant, Tomáš (advisor)
The presented diploma thesis concerns linear fracture mechanics and deals with determination of the stress intensity factor of the finite crack, which is located in the vicinity of the bimaterial interface, solved by the distributed dislocation technique and theory of complex potencials. The work is possible to devide into three parts. The first part includes basic concepts of the linear fracture mechanics and is also dedicated to the mechanics of composite materials. The second part deals with the determination of the stress intensity factor from solving singular integral equation formulated by Bueckner's principle and the distributed dislocation technique. The third part includes the specific configuration of the crack with respect to the bimaterial interface and the solution, which is compared with results obtained from the FE analysis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.